\qquad

Material covered on Thursday's benchmark:

- Ch 13 (Sections 1, 2, 3, 5): Rational Expressions and Equations
- Section 13.4: Rational Functions
- Exponential Functions \& Previous Function Knowledge

1) Joanna's pay for working overtime, p, varies jointly as the number of hours she works, n, and her hourly pay rate, r, and $p=\$ 103.44$ when $n=8$ hours and $r=\$ 8.62$. Find n when $p=\$ 213.75$ and $r=\$ 9.50$.
2) The cost of packing boxes, c, varies inversely with the number of boxes, b, purchased. If $c=\$ 0.75$ when $b=20$, determine the cost of packing 5 boxes.
3) The time required to process a shipment of goods at Wal-Mart varies directly with the number of items in the shipment and inversely with the number of workers assigned. If 15,000 items can be processed by 8 workers in 10 hours, then how long would it take 12 workers to process 20,000 items?

Simplify the following rational expressions.
4) $\frac{x+1}{x^{2}-7 x-18} \div \frac{7 x^{2}}{7 x^{3}+14 x^{2}}$
5) $\frac{3 x^{2}+18 x}{x^{2}+x-30}$
6) $\frac{x^{2}+6 x+5}{6 x+6} \cdot \frac{x-6}{5 x^{2}+25 x} \cdot \frac{15 x-30}{3}$
7) $\frac{x}{x+3}+\frac{2 x+6}{x^{2}+6 x+9}$
8) $\frac{2 x^{2}+64}{x^{2}-64}-\frac{x-4}{x+8}$
9) $\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2 y-3}$
10) $\frac{\frac{x}{x+2}}{2 x+\frac{x}{5}}$
11) $\frac{\frac{x^{2}+8 x+15}{x^{2}+x-6}}{\frac{x^{2}+2 x-15}{x^{2}-2 x-3}}$
12) $\frac{20 x^{4}}{x^{2} y} \cdot \frac{x^{3}}{6 y^{3}} \div \frac{10 x^{2} y}{12 y^{6}}$
13) $\frac{x^{2}+13 x+42}{x^{3}-2 x^{2}-63 x}$
14) $\frac{\frac{1}{2}+\frac{1}{x}}{\frac{1}{4}-\frac{1}{x^{2}}}$
15) $\frac{x}{6 x+24}-\frac{4}{x^{2}+2 x-8}$

Solve and check for extraneous solutions.
16) $x-\frac{6}{x}=5$
17) $\frac{2}{d+2}+\frac{8}{d-2}=\frac{14}{d^{2}-4}$
18) $\frac{4}{x^{2}-4}=\frac{1}{x-2}$

Find the characteristics listed of the rational function. List the transformations.

$$
\text { 19) } f(x)=-\frac{2}{x+5}-1
$$

Vertical Asymptote: \qquad
Horizontal Asymptote: \qquad
Domain: \qquad
Range: \qquad
20) $f(x)=\frac{1}{x-3}+2$

Vertical Asymptote: \qquad
Horizontal Asymptote: \qquad
Domain: \qquad
Range: \qquad
21) Write a rational function with a hole located at $x=-3$, vertical asymptotes at $x=4$, zero of $x=\frac{2}{3}$, and horizontal asymptote of $y=3$.
22) Write a rational function with a hole located at $x=0$, vertical asymptotes at $x=-9$ and $\frac{1}{6}$ and horizontal asymptote of $y=0$.

Find the characteristics of each rational function.
23) $f(x)=\frac{2 x^{2}-5 x-3}{x^{2}+4 x-21}$
24) $f(x)=\frac{x^{2}+6 x+5}{x-2}$
25) $f(x)=\frac{x}{x^{2}-9}$

VA	VA	VA
HA	HA	HA
SA	SA	SA
Zeros	Zeros	Zeros
Holes	Holes	Holes

Write Question \#24 in the translated form of $f(x)=\frac{a}{x-h}+k$ and List All Transformations.

Given the following exponential functions. Give the domain/range (interval notation), the asymptote equation, end behavior (using limits), the parent function, growth/decay, and transformations.
26) $f(x)=2 \cdot 4^{x-7}-6$
27) $g(x)=-\left(\frac{1}{2}\right)^{3 x+5}$
28) $f(x)=\frac{5}{4} \cdot\left(\frac{3}{4}\right)^{-\frac{5}{6} x}+3$
29) $g(x)=-5^{x}-8$

For the following functions, give domain/range, equations of any asymptotes, and end behavior (using limits)
30) $f(x)=-x^{7}+6 x^{2}-3$
31) $g(x)=-\sqrt{x-3}+4$
32) $f(x)=-4|3 x|+4$
33) $g(x)=\frac{3}{x}+5$

