Material covered on Thursday's benchmark:

- Ch 13 (Sections 1, 2, 3, 5): Rational Expressions and Equations
- Section 13.4: Rational Functions
- Exponential Functions & Previous Function Knowledge

1) Joanna's pay for working overtime, p, varies jointly as the number of hours she works, n, and her hourly pay rate, r, and p=\$103.44 when n=8 hours and r=\$8.62. Find n when p=\$213.75 and r=\$9.50.

2) The cost of packing boxes, *c*, varies inversely with the number of boxes, *b*, purchased. If c=\$0.75 when b=20, determine the cost of packing 5 boxes.

3) The time required to process a shipment of goods at Wal-Mart varies directly with the number of items in the shipment and inversely with the number of workers assigned. If 15,000 items can be processed by 8 workers in 10 hours, then how long would it take 12 workers to process 20,000 items?

Simplify the following rational expressions.

4)
$$\frac{x+1}{x^2-7x-18} \div \frac{7x^2}{7x^3+14x^2}$$
 5) $\frac{3x^2+18x}{x^2+x-30}$ 6) $\frac{x^2+6x+5}{6x+6} \cdot \frac{x-6}{5x^2+25x} \cdot \frac{15x-30}{3}$

7)
$$\frac{x}{x+3} + \frac{2x+6}{x^2+6x+9}$$
 8) $\frac{2x^2+64}{x^2-64} - \frac{x-4}{x+8}$ 9) $\frac{2}{y+3} - \frac{y}{y-1} + \frac{y^2+2}{y^2+2y-3}$

$$10)\frac{\frac{x}{x+2}}{2x+\frac{x}{5}}$$

$$11)\frac{\frac{x^2+8x+15}{x^2+x-6}}{\frac{x^2+2x-15}{x^2-2x-3}}$$

$$12)\frac{20x^4}{x^2y} \cdot \frac{x^3}{6y^3} \div \frac{10x^2y}{12y^6}$$
 13) $\frac{x^2 + 13x + 42}{x^3 - 2x^2 - 63x}$

Solve and check for extraneous solutions.

16)
$$x - \frac{6}{x} = 5$$
 17) $\frac{2}{d+2} + \frac{8}{d-2} = \frac{14}{d^2-4}$ 18) $\frac{4}{x^2-4} = \frac{1}{x-2}$

Find the characteristics listed of the rational function. List the transformations.

$19) f(x) = -\frac{2}{x+5} - 1$	20) $f(x) = \frac{1}{x-3} + 2$
Vertical Asymptote:	Vertical Asymptote:
Horizontal Asymptote:	Horizontal Asymptote:
Domain:	Domain:
Range:	Range:

21) Write a rational function with a hole located at x = -3, vertical asymptotes at x = 4, zero of $x = \frac{2}{3}$, and horizontal asymptote of y = 3.

22) Write a rational function with a hole located at x = 0, vertical asymptotes at x = -9 and $\frac{1}{6}$ and horizontal asymptote of y = 0.

Find the characteristics of each rational function.

23)
$$f(x) = \frac{2x^2 - 5x - 3}{x^2 + 4x - 21}$$
 24) $f(x) = \frac{x^2 + 6x + 5}{x - 2}$ 25) $f(x) = \frac{x}{x^2 - 9}$

VA	VA	VA
НА	НА	HA
SA	SA	SA
Zeros	Zeros	Zeros
Holes	Holes	Holes

Write Question #24 in the translated form of $f(x) = \frac{a}{x-h} + k$ and List All Transformations.

Given the following exponential functions. Give the domain/range (interval notation), the asymptote equation, end behavior (using limits), the parent function, growth/decay, and transformations.

26)
$$f(x) = 2 \cdot 4^{x-7} - 6$$
 27) $g(x) = -\left(\frac{1}{2}\right)^{3x+5}$

28)
$$f(x) = \frac{5}{4} \cdot \left(\frac{3}{4}\right)^{-\frac{5}{6}x} + 3$$
 29) $g(x) = -5^x - 8$

For the following functions, give domain/range, equations of any asymptotes, and end behavior (using limits)

30)
$$f(x) = -x^7 + 6x^2 - 3$$

31) $g(x) = -\sqrt{x - 3} + 4$

32) f(x) = -4|3x| + 433) $g(x) = \frac{3}{x} + 5$